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We use a generalized master equation �GME� to describe the nonequilibrium magnetotransport of interacting
electrons through a broad finite quantum wire with an embedded ring structure. The finite quantum wire is
weakly coupled to two broad leads acting as reservoirs of electrons. The mutual Coulomb interaction of the
electrons is described using a configuration interaction method for the many-electron states of the central
system. We report some nontrivial interaction effects both at the level of time-dependent filling of states and on
the time-dependent transport. We find that the Coulomb interaction in this nontrivial geometry can enhance the
correlation of electronic states in the system and facilitate it’s charging in certain circumstances in the weak
coupling limit appropriate for the GME. In addition, we find oscillations in the current in the leads due to the
correlations oscillations caused by the switched-on lead-system coupling. The oscillations are influenced and
can be enhanced by the external magnetic field and the Coulomb interaction.
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I. INTRODUCTION

The Coulomb blocking of electrons entering nanostruc-
tures has been known for quite some time and is explained
by the magnitude of the direct part of the repulsive Coulomb
interaction energy in relation to the energy spectrum of the
nanosystem.1 The experimental and theoretical studies of
Coulomb effects on the mesoscopic transport were com-
monly focused on steady-state regime of single or double
quantum dots. However, the increasing interest in fast dy-
namics at nanoscale and time-resolved detection of electrons
via a nearby detector strongly motivates theoretical investi-
gations of interacting time-dependent transport in complex
systems. The dynamical aspects of the Coulomb blocking
have been investigated by Kurth et al. in a one-dimensional
lattice model using combination of nonequilibrium Green’s
functions and time-dependent density-functional theory for
the Coulomb interaction.2

In a recent work3 we have also analyzed the transient
currents through an interacting two-dimensional quantum dot
by solving the generalized master equation for the matrix
elements of the reduced density operator acting in the Fock
space of interacting many-electrons states of the dot. The
GME scheme that we implement numerically takes into ac-
count the geometrical details of the sample and leads �see
Ref. 4�. Our aim here is to apply the same method to more
complex systems in order to single out nontrivial Coulomb
effects in the transient regime. The system we consider is a
parabolic quantum wire with an additional ring-shaped con-
fining potential. The embedded ring geometry imposes dif-
ferent localization properties of the states with respect to the
regions where the leads are attached. This fact has important
consequences on the time-dependent filling of the many-
electron states.

Experimental realization of our system could be a long
quantum wire with two gate fingers sectioning the wire into

the finite quantum wire �the system between the gate fingers�
and the leads outside them. The gate fingers create tunable
tunneling barriers into the system with an embedded sub-
system created by a structured gate. We are interested in the
time-dependent charging of the finite system so it would be
essential to tune the electron number in the system by a
backgate or other appropriate means.

Even though the transport and magnetic properties of
quantum rings have fascinated researchers for a long time
new questions and results regarding the Aharonov-Bohm in-
terference oscillations have been catching attention.5–7 Dy-
namical effects have been studied in open or closed quantum
rings. Propagation of electron pulses in rings of finite width
has been investigated by Chaves et al.8 and by Thorgilsson et
al.9 within scattering theory, and nonadiabatic current gen-
eration in a closed finite quantum ring in an external mag-
netic field has been studied by integrating the Liouville-von
Neumann equation for the density operator in time.10 The
system was perturbed by a strong dipole or higher-order mul-
tipolar electric field pulse and the mutual Coulomb interac-
tion between the electrons was included in a mean-field man-
ner with a density-functional-theory �DFT� approach.

We use a non-Markovian version of the generalized mas-
ter equation4,11 and treat the Coulomb interaction of the elec-
trons exactly within a truncated many-electron basis.3 The
GME formalism was originally proposed by Nakajima and
Zwanzig,12,13 and has more recently been applied to study
transport phenomena by several authors,14–17 just to cite few.

The paper is organized as follows: Sec. II sets the nota-
tions and presents briefly the formalism, Sec. III describes
the quantum wire structure with the embedded ring, Sec. IV
contains the results and their discussion while Sec. V is left
for conclusions.

II. GME AND THE COULOMB INTERACTION

In this section we recall the main outlines of the GME
method leading to the numerical results. The time-dependent
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transport of noninteracting electrons with the generalized
master equation has been described in two publications for a
lattice model4 and a continuous model.11 The noninteracting
many-electron Hamiltonian of the coupled system �i.e., the
central sample, the leads and time-dependent coupling� reads
as

H�t� = �
a

Eada
†da + �

q,l=L,R
�l�q�cql

† cql + HT�t� , �1�

where the tunneling Hamiltonian HT�t�=HT
L�t�+HT

R�t� de-
scribes the coupling of the system to the left and right leads

HT
l �t� = �l�t��

q,a
�Tqa

l cql
† da + �Tqa

l ��da
†cql� . �2�

The creation and annihilation operators are associated to
single-particle states of the disconnected subsystems. The
coupling coefficient Tqa

l of a single-electron state �q� in the
lead l to a state �a� in the system is modeled as a nonlocal
overlap integral of the corresponding wave functions in the
contact regions of the system, �S

l , and the lead l, �l �Ref. 11�

Taq
l = �

�S
l ��l

drdr�	�q
l �r��
��a

S�r�gaq
l �r,r�� + H.c. �3�

The function

gaq
l �r,r�� = g0

l exp	− �1
l �x − x��2 − �2

l �y − y��2


�exp�− �Ea − �l�q��
�E

l � �4�

with r��S
l and r���l defines the “nonlocal overlap” and

their affinity in energy. The semi-infinite leads have the same
parabolic confinement as the finite quantum wire in the y
direction, perpendicular to the transport direction x. The con-
finement is characterized by the energy scale ��0. The en-
ergy spectrum of the leads �l�q� is continuous but with clear
subband structure. The effects of the external magnetic field
B=Bẑ is present in the energy spectrum of the leads �l�q�,
the spectrum of the system Ea, and in the wave functions of
the leads and the system.

In order to describe the time-dependent transport when
the system contains few electrons we select the lowest NSES
single-electron states �SESs� of the central system to con-
struct a Fock space with NMES=2NSES many-electron states
�MESs�. In the occupation representation basis such a state
can be written as

�	� = �i1
	,i2

	, . . . ,in
	, . . .� , �5�

where in
	 is the occupation of the nth single-particle state of

the isolated system. NSES is selected large enough that the
chemical potentials of the leads 	l in equilibrium before the
coupling at t=0 are smaller than the energy of the highest
SES, and ideally a further increase of NSES should not change
the transport results of the calculations.

The Liouville-von Neumann equation describing the time
evolution of the total system, central system and leads

i�Ẇ�t� = 	H�t�,W�t�
, W�t 
 t0� = �L�R�S, �6�

where the equilibrium density operator of the disconnected
lead l with chemical potential 	l is

�l =
e−��Hl−	lNl�

Trl�e−��Hl−	lNl��
. �7�

The Liouville-von Neumann equation is now projected on
the central system by partial tracing operations with respect
to the operators of the leads. Defining the reduced density
operator �RDO� of the central system

��t� = TrLTrRW�t�, ��t0� = �S, �8�

we obtain an integro-differential equation for the RDO, the
generalized master equation �GME�

�̇�t� = −
i

�
	HS,��t�
 −

1

�2 �
l=L,R

� dq�l�t��	Tl,�ql�t�
 + H.c.� ,

�9�

where two operators have been introduced to compactify the
notation

�ql�t� = US
†�t��

t0

t

ds�l�s�ql�s�ei	�s−t�/�
�l�q�US�t� ,

ql�s� = US�s�	Tl†��s��1 − f l� − ��s�Tl†f l
US
†�t�

with US�t�=ei�t/��HS and a scattering or coupling operator T
acting in the Fock space of the system

Tl�q� = �
�,�

T��
l �q������ , �10�

T��
l �q� = �

a

Taq
l ��da

†��� . �11�

Here the kernel of the integro-differential equation has been
obtained by taking into account only second-order processes
with respect to the coupling coefficients. It should though be
kept in mind that the structure of the equation implies higher
order processes to infinite order.

In the derivation of the GME here only the coupling
Hamiltonian is allowed to depend on time. The possibility of
the Hamiltonian of the central system HS depending on time
�describing a laser pulse for example� has been considered
by Amin et al.18 A time-dependent DFT �TDDFT� descrip-
tion of the mutual Coulomb interaction of the electrons in the
central system would require HS to be time-dependent and it
would either require us to alter our GME in order to deal
with time ordering in the evolution operators for the system
or it would require a further reduction in the GME introduc-
ing the reduced single-particle density matrix loosing some
many-electron correlation effects caused by the coupling of
the system to the leads.19

Our approach to solve this dilemma has been reported
earlier3 but here we shall briefly outline it for the case of the
continuous model. We choose to change the Hamiltonian of
the central system
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HS = �
a

Eada
†da +

1

2 �
abcd

ab�VCoul�cd�da
†db

†dddc �12�

to include the time-independent Coulomb interaction term
appropriate for our many-electron formalism. The Coulomb
potential is

VCoul�r − r�� =
e2

���x − x��2 + �y − y��2 + �2
�13�

and the matrix elements are

ab�VCoul�cd� =� dr�a
��r�Ibc�r��d�r� �14�

with

Ibc�r� =� dr��b
��r��VCoul�r − r���c�r�� �15�

and � is a small convergence parameter to be specified later.
Along the lines of approaches developed under the names of
“configuration interaction” or “exact numerical diagonaliza-
tion” we diagonalize the new interacting Hamiltonian �12� in
the MES basis of the noninteracting system ��	�� in the en-
tire Fock space built from the NSES SES states, including all
sectors containing zero electrons �the vacuum state� to NSES
electrons, since we are dealing with an open system with
variable number of electrons. The diagonalization yields a
new basis of interacting MES �� �	�� connected to the nonin-
teracting one by a unitary transformation

��	� = �
�

V	���� , �16�

supplied by the diagonalization. Here we need to keep in
mind that V will be represented by an NMES�NMES matrix in
numerical calculations. An inspection of the structure of the
noninteracting GME in Eq. �9� reveals that the equation can
also be transformed to the interacting basis �� �	�� by the uni-
tary transformation. Thus, in a numerical calculation a basis

transformation of the many-electron coupling matrix T̃l�q�
=V†Tl�q�V in Eq. �11� and the insertion of the diagonalized

matrix representation of the interacting HS in the GME, Eq.
�9�, will give the RDO in the interacting MES basis �̃
=V†�V. As all measurable quantities are in the end expressed
as a partial trace with respect to operators of the central
system expectation values can be calculated in the new basis
and for the same reason in the noninteracting case we can
again obtain the mean value of the left or right current di-
rectly from the transformed GME.

In our earlier publication11 neglecting the Coulomb inter-
action it was clear that we could only effectively describe the
time-dependent transport through systems with up to seven
or eight SESs considered relevant for the currents, situated in
and around the window of the chemical potentials of the two
leads. This limitation was imposed by the complex band
structure of the energy spectrum in the broad leads employed
in the calculations. Here, we may have to include more SESs
in order to describe reasonably the interaction of the elec-
trons in the central system. In order to accomplish this we
have to resort to a more refined truncation procedure than we
used for the noninteracting system: The unitary transforma-
tion cannot be truncated and has to include the NMES states
constructed initially from the NSES SESs. In the numerical
calculations here we will employ 12 SES leading to 4096
MES. The unitary transformation of Tl�q� is thus CPU-time
intensive for all the q values necessary for the leads but it has
only to be performed once. After that it is possible to deploy
a second truncation to the GME by keeping only the NMES�
�NMES MES with lowest energy. Typically, for the param-
eters that we will select for the numerical calculations here
we need only NMES� =32 but this cutoff is very system
dependent.

III. EMBEDDED QUANTUM STRUCTURE

Here we will use the GME to analyze time-dependent
transport of electrons through a short but broad quantum
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Eq. �17�, embedded in the finite quantum wire at B=1.0 T, Vg

=1.0 meV, and aw=23.87 nm. 0

1

2

3

4

E
(m

eV
)

SES
MES

µR

FIG. 2. �Color online� The energy spectra for the SESs and the
MESs built from the lowest 12 SESs. The solid line �green� indi-
cates the chemical potential of the right lead 	R=1.6 meV. B
=1.0 T, Vg=1.0 meV, and Lx=300 nm.
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wire of length Lx=300 nm with an embedded quantum ring.
The parabolic confinement of the quantum wire is character-
ized by the energy scale ��0=1.0 meV, and we assume
GaAs parameters with m�=0.067me and �=12.4. The em-
bedded ring is represented by the potential

VQR�r� = �
i=1

2

Vi exp	− ��xix�2 − ��yiy�2
 + Vg �17�

with V1=−4.0 meV, V2=+14.0 meV, �x1=1.09
�10−2 nm−1, �y1=3.46�10−4 nm−1, �x2=1.09
�10−2 nm−1, and �y2=2.83�10−2 nm−1. The parameter Vg
can be thought of as a gate voltage. We use it to position the
chemical potential of the right lead 	R at a similar place in
the energy spectrum of the SESs for the two values of the
magnetic field investigated here. �For B=1.0 T we use Vg
=1.0 meV and for B=0.5 T we have Vg=1.2 meV�. Figure
1 shows the ring embedded in the quantum wire with the

spatial coordinates scaled by the magnetic length modified
by the parabolic confinement aw=�� / �m��w�, with �w

2

=�0
2+�c

2 at B=1.0 T, where the cyclotron frequency is �c

=eB / �m�c�. At B=1.0 T aw=23.87 nm. In the following
calculations we use for the coupling in Eq. �4� �1

l =4.39
�10−4 nm−2, �E

l =0.5 meV, and g0
l aw

3/2=30 meV or 40
meV.

The energy spectra for the closed system of a quantum
wire with an embedded ring are shown for the SESs and the
MESs in Fig. 2 with the chemical potential of the right lead
to be used in the following dynamical calculations 	R indi-
cated. As will be evident from the probabilities of the SESs
the two lowest states are almost degenerate, so below 	R
there are six SESs. In the dynamical calculation to follow we
will use the 12 lowest SESs to build the relevant MESs.
Besides the vacuum MES at zero energy we thus recognize
the 12 SESs again as MESs occupied by only one electron
each. Above the energy of the highest SES accounted for we
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have a relatively dense spectrum of MESs occupied by two
electrons. Due to the strong Coulomb interaction the lowest
MES occupied by three electrons is located well above the
highest energy shown in Fig. 2.

The value of 	R=1.6 meV is selected such that below it
there are both SESs localized away from the contact region
and states with a strong weight in that region. The probabil-
ity for the SESs is displayed in Fig. 3.

IV. DYNAMICAL TRANSPORT PROPERTIES

In a recent paper3 among other things we demonstrated a
dynamical Coulomb blocking effect in a small system where

all the relevant SESs are extended. There, the mutual Cou-
lomb interaction between the electrons in the system pre-
vents the entrance of further electrons until the bias is high
enough and the occupation of the system in the steady state
regime shows the well-known Coulomb steps as a function
of the bias between the left and right leads. The time depen-
dence of the contact functions �l is described by

�L,R�t� = �1 −
2

e�L,Rt + 1
� �18�

with �l=1.0 ps−1. We fix the temperature of the reservoirs at
T=0.5 K.

A. Enhanced occupation by the Coulomb interaction

Here, in a system where not all the states of the system
are extended we will show that the Coulomb interaction can
bring about a totally different dynamical effect: Fig. 4 shows
that even for a small bias �	=	L−	R=0.1 meV only one
electron seems to be able to enter the initially empty system
in the absence of the Coulomb interaction but the Coulomb
interaction seems to facilitate the entrance of the second
electron into the system. A glance at Figs. 5 and 6 showing
the occupation of the MESs� �	� in case of the interacting and
the noninteracting system, respectively, indicates a very dif-
ferent charging effect for the two cases. In the case of the
noninteracting system the one-electron MES � �5�
= �000100000000� is occupied up to 78% after t=380 ps and
the state� �9�= �000000001000� carries 12% with the rest dis-
tributed to several states. For the interacting system the one-
electron state� �5�= �000100000000� is again initially occu-
pied with a slight occupation of � �9�= �129�
= �000000010000� but soon they loose to the two-electron
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B=1.0 T, Vg=1.0 meV, Lx=300 nm, and g0
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MES� �19� and� �25� that take over. The state� �19� is a two-
electron state with the main contributions from
�000110000000�, �100010000000�, �001100000000�,
�010100000000�, and �101000000000�.� �25� is also a two-
electron MES with the main contributions from
�100000100000�, �100001000000�, �010000010000�,
�000100100000�, and �000101000000�.

The energy of the state� �19� is 3.36 meV and the mean
energy for the same range of time seen in Fig. 7 is higher for
the interacting case. We assume the leads are in equilibrium
before the coupling to the wire at t=0 at a temperature of 0.5
K corresponding to 0.043 meV. The energy 3.36 meV of� �19�
is valid for the case of exactly two electrons in the state, here
we can only explain the occupation of this state well above
	L with the fact that it is only partially occupied. In other
words the SES elements which build the MES� �19� are only
partially occupied. This corresponds well with the values of
the mean energy stored in the ring shown in Fig. 7.

In the noninteracting case one electron can enter the sys-
tem and it occupies the state� �5�= �000100000000� just below
	R. This state is the lowest state with high weight in the
contact region, below which only states �a=1, a=2� exist
with more weight away from the region of contacts, in the
sides of the quantum ring, as Fig. 3 confirms. �The state a
=3, or �001000000000�, is nearly degenerate with� �5� but
does not participate in the transport to large extent for the
noninteracting case�. The Coulomb interaction couples to-
gether these two different types of states and facilities thus
the occupation of two-electron states with one of the elec-
trons in a low-energy SES state with poor coupling to the
contacts. Similar phenomena is observed at B=0.5 T if the
chemical potential in the right lead is placed in a correspond-
ing location with respect to the 12 noninteracting SESs used
in the calculation by varying Vg.

The current in the left and right leads displayed in Fig. 8
shows that neither the interacting nor the noninteracting sys-
tems have reached a steady state in the 380 ps shown. Both
leads are still supplying charge to the system but in the case
of the interacting system the time constants are clearly longer
for the charging process that is enhanced by the Coulomb
interaction.

The many-electron charge distributions compared in Fig.
9 for the noninteracting and the interacting system at t
=380 ps confirm this observation and reminds us that the
two-electron state in the right panel has a relatively low in-
teraction energy due to the reduced overlap of states with
high probability in the contact region and states with high
probability at the other sides of the ring.

In Fig. 10 we compare the truncated RDO �	� for the case
of the noninteracting and the interacting system at t
=380 ps. On the diagonal in the left panel we see again as in
Fig. 6 that for the noninteracting case only state � �5� has
considerable occupation while the vacuum state� �1� is loos-
ing its initial high value and state� �9� is gaining some weight.
So, only one-electron states are occupied here. In the case for
the interacting system the right panel of Fig. 10 shows as
Fig. 5 a strong emergent occupation of� �19�, a two electron
state. Figure 2 revealed a small energy gap between the
single-electron states and the many-electron states of the in-
teracting system. The GME-formalism excludes any correla-
tion between MESs with a different number of electrons. A
manifestation of this can be seen in the right panel of Fig. 10
where only vanishing off-diagonal elements can be found in
the upper left and the lower right rectangles correlating one-
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and two-electron states. �The one-electron states being 	
=1,2 , . . . ,12�. For the noninteracting case in the left panel of
Fig. 10 this separation is not as clear cut since there the
regions of one- and two electrons states overlap slightly.
More importantly, Fig. 10 reveals a nonvanishing correlation
between all two-electron states that gain any occupation in
the system. Initially for both cases only the vacuum state� �1�
was occupied so clearly the coupling to the leads brings
about correlation of the electrons in the system, and in addi-
tion, the Coulomb interaction strongly influences this corre-
lation.

B. Current oscillations

In this section we will compare the total current in the
leads for two different values of the magnetic field, i.e., at
0.5 and 1.0 T, and observe how the current changes as the
bias is increased. We find that the current exhibits smooth
oscillations with a period of several picoseconds for the
higher magnetic field as the bias is increased. Here we
should mention right away that we are not describing the
small oscillations seen in Fig. 8 at a shorter time scale that
are caused by an interference of the coupling to different
subbands of the leads. �In the case of a one-dimensional lead
like has been used in the lattice version of the GME model
these oscillations do not appear�.4

The lowest 32 levels of the many-electron energy spectra
for the two different values of the magnetic field are dis-

played in Fig. 11, where a care has been taken to identify the
one- and two-electron MESs for both cases with different
symbols. Here, �	=0.5 meV. We note that for B=1.0 T the
one- and two-electron MESs are separated by a small energy
gap but not for 0.5 T. The time-dependent occupation prob-
ability of the MESs is demonstrated in Fig. 12. Further
analysis of the state structure of the system is done in Table
I for B=1.0 T and in Table II for 0.5 T. At B=1.0 T mainly
the one-electron state � �5� is initially occupied with lesser
probability for � �9�. Without the Coulomb interaction only
these two states with the same components will gain any
significant probability of occupation. Similarly, as in previ-
ous section where we analyzed the occupation of the system
at a lower bias we see here that the Coulomb interaction
facilitates the coupling to the lower lying states and thus
increases the probability of the occupation of a two-electron
state with one of the electrons in a low energy SES. The next
two-electron state to gain significant occupation probability
is� �25� with a bit higher energy and a higher likelihood for
one of the electrons to be just above 	R.

Very similar picture is seen in Table II for the state struc-
ture at B=0.5 T, with the exception that only a single one-
electron state gains significant occupation probability and the
two-electron states coming in after the most probable one,
� �19�, are lower in energy than that one. Also, though not
shown here the noninteracting system at B=0.5 T will gain a
slight probability for the occupation of a two-electron states.
This is caused by the missing gap between the one- and
two-electron states that we earlier pointed out in Fig. 11.

Figure 13 compares the total current in the left and right
leads for B=1.0 T in the top panel for a noninteracting and
an interacting system. Both show smooth oscillations after
the initial transient period but they are clearer for the inter-
acting system. The center panel of Fig. 13 demonstrates that
the oscillations in the current are not changed to any extent
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FIG. 10. �Color online� The reduced density matrix ��	��0.36 for
the noninteracting �upper panel� and interacting system �lower
panel� at t=380 ps. �	=0.1 meV, B=1.0 T, Vg=1.0 meV, Lx

=300 nm, and g0
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the smaller off-diagonal elements visible on scale needed for the
larger diagonal elements.
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by smoothly decoupling the system momentarily from the
leads around t=150 ps. The bottom panel of Fig. 13 indi-
cates that for the case of B=0.5 T the oscillations are either
absent or too weak to be discernible. Clearly, the system is
not in its ground state, the coupling to the leads moves it out
of equilibrium, and a glance at Tables I and II observing
what kind of states are available to the system awakens the
question if the coupling has generated collective oscillations
as in the case of the closed ring subject to strong external
perturbation.10 In the case of the system without an interac-

tion the single-electron states would have a restoring force
from the potential defining the wire and the ring which do
not have a totally flat bottom, see Fig. 1. But here the cou-
pling to the leads is weak, the momentary switch-off of it
does not influence the oscillations, and an inspection of the
density confirms that the density only shows minute oscilla-
tions that we will describe below.

The dynamic evolution is governed by the GME in Eq.
�9� and in Fig. 14 we display the correlation of the two-
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FIG. 12. �Color online� For the interacting system the occupa-
tion of MESs as a function of time for B=0.5 T �upper panel� and
B=1.0 T �lower panel�. Lx=300 nm. At B=1.0 T Vg=1.0 meV
and at B=0.5 T Vg=1.2 meV. 	R=1.6 meV, �	=0.5 meV, and
g0

l aw
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TABLE I. The most probable interacting MES � �	� at t
=380 ps and B=1.0 T together with their strongest components ���
of noninteracting MESs. The Fock space representation of the states
��� is shown with a period indicating the location of the chemical
potential 	R in the right lead. �	=0.5 meV and g0

l aw
3/2=40 meV.

1e � �5� E5=1.28 meV

�9� �000100.000000� 100.0%

1e � �9� E9=1.88 meV

�129� �000000.010000� 100.0%

2e � �19� E19=3.36 meV

�6� �101000.000000� 11.8%

�11� �010100.000000� 9.1%

�13� �001100.000000� 11.3%

�18� �100010.000000� 20.1%

�25� �000110.000000� 35.5%

2e � �25� E25=3.68 meV

�34� �100001.000000� 20.2%

�41� �000101.000000� 4.9%

�66� �100000.100000� 29.0%

�73� �000100.100000� 12.3%

�131� �010000.010000� 17.8%

TABLE II. The most probable interacting MES � �	� at t
=380 ps and B=0.5 T together with their strongest components ���
of noninteracting MESs. The Fock space representation of the states
��� is shown with a period indicating the location of the chemical
potential 	R in the right lead. �	=0.5 meV and g0

l aw
3/2=40 meV.

1e � �5� E5=1.31 meV

�9� �00010.0000000� 100%

2e � �19� E19=3.46 meV

�6� �10100.0000000� 12.0%

�11� �01010.0000000� 22.4%

�13� �00110.0000000� 33.8%

�19� �01001.0000000� 4.6%

�21� �00101.0000000� 10.1%

2e � �13� E13=3.02 meV

�4� �11000.0000000� 88.2%

�6� �10100.0000000� 4.5%

�13� �00110.0000000� 6.4%

2e � �18� E18=3.33 meV

�7� �01100.0000000� 10.4%

�10� �10010.0000000� 73.8%

�37� �00100.1000000� 11.3%
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electron state �19� that gains the highest occupation probabil-
ity with time in our system, i.e., the off-diagonal elements of
the RDO, �19,�. For both values of the magnetic field we see
indeed oscillations with comparable period as the smooth

oscillations in the current but in the case of the lower mag-
netic field many elements show strong oscillations but not in
phase. For the higher magnetic field only one or two ele-
ments oscillate and one of them is clearly stronger.

We see thus that oscillations of the electron correlations
are inherent in the GME formalism irrespective of the pres-
ence of the Coulomb interaction or not. It is a part of the
correlations forced on various states of the system by the
coupling to the leads. Here, we observe that the Coulomb
interaction further couples different types of states in the
system. States with weak coupling to the leads residing in
regions of the system away from the contact area with states
with higher presence in the contact area. Furthermore, the
magnetic field simplifies the energy spectrum of the system
such that oscillations in the correlation of a single pair of
MESs will be dominant and thus visible in the total current.

As was stated before the oscillations in the density caused
by the oscillation in the electron correlation are minute. We
thus display in Fig. 15 the “derivative” density or induced
density defined by n�r , t�−n�r , t−�t�, where we have taken
�t=1.5 ps instead of comparing always to the density at a
certain fixed point in time, the reason being that the electron
charge is still increasing in the time interval used and we see
the density peaks in the ring away from the contact area
always growing.

In addition, we see that electron density or charge is
shifted between the peaks and the contact area thus influenc-
ing the effective coupling between the system and the leads.

In order to check the stability of the results with respect to
the exact location of the window of chemical potential we
have repeated the calculations for 	R=2.0 meV. The results
are very similar with respect to the oscillations observed in
the current and the occupation of the MESs. The states gain-
ing highest occupation are still the same but at 	R
=2.0 meV additional MESs with a bit higher energy show
up with low occupation that were almost empty for 	R
=1.6 meV. At present we do not feel confident to increase
the height of the bias window further due to the fact that we
have only included 12 SESs in the calculation.

V. SUMMARY

We have used a time-dependent transport formalism built
on the GME where the mutual Coulomb interaction between
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FIG. 13. �Color online� The total current in the left and right
leads as function of time for the noninteracting and the interacting
system at B=1.0 T �top panel�. The total current in the left and
right leads for a system with steady coupling compared to a system
where the coupling is momentarily switched-off smoothly around
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electrons is treated within the “exact numerical diagonaliza-
tion” or “configuration interaction” to analyze the transport
properties of a quantum two-dimensional ring or a short 2D
quantum wire with an embedded ring. The quantum wire is
defined by a parabolic confinement potential in the wire
plane perpendicular to the transport direction. The ends of
the quantum wire are hard walls that are made transparent to
tunneling by a weak coupling to leads. The shape of the finite
wire and the definition of the ring potential in Eq. �17� lead
to a ring system with a potential that does not have a totally
flat bottom, see Fig. 1. For this reason we have a system that
has SESs that are ring states for higher energy but the lowest
states can be slightly localized in different part of the system,
see Fig. 3. We show that indeed, in this geometry the Cou-
lomb interaction between the electrons increases the occupa-
tion of the system by coupling states with different localiza-
tion properties. The correlation of the states in the system
caused by the coupling to the leads is enhanced by the Cou-
lomb interaction leading to a behavior that runs counter to
the usual Coulomb blockade in a simpler geometry. Of
course the Coulomb blocking mechanism is inherent in the
interacting system, but by comparing the interacting system
with the noninteracting one we discover finer details in the
action of the interaction, details that are usually collected
under the title: correlation effects.

The properties of the system reported here are not unique
to the geometry chosen, but can be reproduced in systems
with wave functions of similar types, i.e., some have weight
in the contact region and others away from it. The properties
of the system are not very sensitive to a slight variation in
the parameters defining the potential in Fig. 1.

In addition, we find current oscillations that are caused by
oscillating correlation properties of the electrons in the sys-

tem. These oscillations become visible in higher magnetic
field due to the reduction in MESs active in the transport by
the magnetic field. As the correlations are caused by the cou-
pling to the leads the oscillations are visible in systems with-
out or with Coulomb interaction between the electrons but
the Coulomb interaction influences them through its enhanc-
ing of correlations by coupling of electronic states.

We like to consider our approach for few electrons a com-
plimentary method to TDDFT schemas,19 appropriate to sys-
tems with a larger density of electrons. We have though to
point out that the different handling of the coupling of the
systems to the leads makes the two approaches not equiva-
lent. This aspect has to be investigated in appropriate model
systems and in comparison with experiments since it touches
on fundamental issues in transport, such as partition-free19,20

and partitioning approaches of which the GME method is
one of many.
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